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As is well known, considerable mathematical difficulties are 
encountered in study of the three-dimensional motions of an ideal fluid 
with free surfaces, since for this case we do not have a powerful math- 
ematical tool at our disposal such as the theory of complex variables, 
used in the case of two-dimensinnal jet streams [1]. Thus. it is of 
interest to study a particular form of three-dimensional jet streams of 
an ideal fluid propagating in a thin layer over an arbitrary hard surface 
[2-4]. Fluid motions of this type are observed when a hydromonitor jet 
flows over rock, in the operation of Pelton hydroturbines [2], in equip- 
ment for determination of dynamic surface tension [5,6], in the theory 
of the jet flap and gashydrodynamic vane [7-9], in the atomization 
of fuel by injectors [:tO], and in various kinds of equipment encountered 

in chemical engineering [11,12]. 
In this paper the author investigated the group properties of equa- 

tions for the axisymmetric jet flow of a thin layer of weightless fluid 
propagating over an arbitrary surface of rotation, and he constructed 
some,invariant solutions for these equations. 

1. Consider a thin-layer jet stream of an ideal incompressible 
fluid flowing over an impenetrable smooth surface of rotation S. This 
motion is referred to a curvilinear orthogonaI coordinate system con- 
nected directly to the surface over which the flow passes. An orthogonal 
family of curvature lines [2] (parallels and meridians) is chosen for the 
coordinate lines q~ = const and qz = eonst on the surface S. The third 
coordinate qa is taken in the direction of the external normal of the 
surface S. In this system of coordinates the Euler equations and 
the equation of continuity for steady-state axisymmetric flow have 
the form 

v~ Ov~ ~_ vs Ovx v~v~ Ohrx va ~ OHa t Op 

vs Ovs 4_ v~ Ova 4- v~vs OH~ v~ OHm_ t Op 
-Hs ~ --  -~l ~ --  l i~Hs Oq~ H1 Hs Oqs pHa Oqs'  

0 (~t t~Hs)  + 0 (vsH,H~) = O. (1.1) 

Here v 1 and vs are velocity components in the direction of the 
coordinate axes, p and p are the pressure and density of the fluid, 
respectively, and H 1, Hz, and H s are the Lam~ parameters, specified 
in this case [13] by the formulas 

//1 (qt, qa) = At (q~) [t ~- qa/Bt (q0], 

H~ (q~, q3) = A~ (q~) ~l + qJg~ (q~)] , 

//3 (q~,qs) = i .  (1.2) 

In formulas (1.2) Rt(ql) and Rz(ql) are the principal radii of curva- 
ture, while Al(ql) and A2(ql) are the coefficients of the first principal 
quadratic form dS '=  A~(ql)dq ~ +A~(ql)d@ for a surface of rotation. 
Let the surface S be formed by rotation of the two-d imens iona l  curve 
z = z(s). y = y(s) > 0 around the z-axis of a Cartesian xyz-coordinate 
system (s is the arc length of the curve). In the case the first principal 
quadratic form for the surface of rotation S is [14] 

dS 2 = ds 2 .jr. y2 (s)dq22, A1 = 1, A2 = y (s), s = q,. (1.3) 

If we assume that the jet thickness h(s), measured along the normal 
to the surface S until the intersection with the free surface of the jet .  

is considerably less than R= min{Rl(s),Rz(s)} on the surface, then 
for axisymmetric flow, from Rls. (1.1) and similar to the two-dimen- 
sional case [4], we have 

uO-~ ~ +vO~ = O~ ~ u ( s ) = O w  
Os Or - -  0 " 7 '  - 0 7  ' 

•  1 0u 0v y ' ( s ) = 0 ,  (1.4) = R - ~  ~ 7 ~  t "  y 

v 1 ~ u ,  v a ~ v ,  p / p  = w ,  qa  ~ r .  (1.5) 

Equations (1.4) are the limiting form of system (1.1) as h / R  --~ 0. 
2. Let us investigate the group properties of the system of quasi- 

linear differential equations (1.4). 
with the method of paper [15] we calculate the principal group G 

of system (1.4). Group G is completely determined by the Lie algebra 
of its infinitesimal operators 

Here gs, gr, gu, gv, and gw are functions of s, u, v, w, and r. 
In the general case the solution of the defining equations for the 

Lie algebra of system (1.4) depends on three arbitrary constants, and 
so group G is the product of a three-parameter group, generated by 
the independent operators 

X1 = or '  X2 = ~ w ,  = 

A greater number of operators is possible only for the case in 
which the surface of rotation over which the flow passes is such that 
the following relation is satisfied: 

y'  (s) • (s)/y (s)• (s) = b = eonst. (2.3) 

Besides operators (2.2), system (1.4) permits one additional operator 
in this case: 

u 0 d u ~ v  O (2.4) X '  = - -  "~ ~ + r O + ( l + -dT "~ / ~v ' 

and G is a four-parameter group. 
Any transformation of group G can be obtained by a certain super- 

position of the transformations corresponding to the operators X~, X 2, 
X 3, and X4. It can easily be verified that the set of operators with base 
(2.2) and (2.4) forms a Lie algebra. Calculations show that a commu- 
tator of any two operators from (2.2) and (2.4) is a linear combination 
of the same operators with constant coefficients. 

Let us investigate invarinnt solutions of system (1.4), constructed 
on single-parameter subgroups of the basic group G. It can easily be 
shown that to determine all those essentially different invariant solu- 
tions of system (1.4) constructed on single-parameter subgroups of the 
principal group G, it suffices to construct solutions on the following 
subgroups, which form an optimum system of single-parameter sub- 
groups of the principal group 6 for system (1.4) in the case of an 
arbitrary surface of rotation. These subgroups are represented by 

X1, X~ @ X2, X2, a X  t -~- X a . (2.5) 

Here a is an arbitrary parameter. 
For the surface of rotation satisfying (2.3), the optimum system 

has the form 

X1, X1 q- X2, X2, c~X1 -b X~, 

X2 + X4, I~X~ § X4. (2.6) 

Here 13 is an arbitrary parameter. 
3. In this section we discuss some of the most interesting invariant 

solutions constructed on the subgroups of (2.5) and (2.6). 
(a) Operator aX 1 + X s in (2.5). A full set of functionally indepen- 

dent invariants [15] of this subgroup is 

J1 ~ ue -r /~,  J~ = ve-r/% 
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J s = w e  -~r/~, J 4 = s  ( a ~ 0 ) .  (3.1) 

Solving (3.1) for u, v, and w, we have 

u = J ~ ( s )  er/% v =Y ~( s )  er/% w = J a ( s )  e ~rl~. (3.2) 

Substituting (3.2) into the equations of system (1.4) we obtain for 
the functions li(s), J~(s), and Js(s) the following system of ordinary 
differential equations: 

= 2Js, ff'Jl' -~- Jz "~ if'J1 Y'/Y = 0 .  (3.3) 

System (3.3) can be solved. We write the solution of the principal 
equations (1.4) in the form 

u=(2c'~ 'h exp;-~ - -  ~ Ya~ ,  

\ ax /  ( 0~ ,)~ty~j\ y z~ y~ / 

f ff ~ 2r 2y'ds w = cxexp ~,__-- ~ 2g'tts~ (c~= eonst) .  
l ~2 ,) ay~ J 

(3.47 

We require that solution (3.4) satisfy the condition 

v = 0  for r = 0 ,  (3.5) 

i .e . ,  the normal component of velocity v should vanish at the  surface 
over which the flow passes. For c a ~ 0 we find from (3.4) that the 
solution constructed has a meaning in the study of jet motions only 
over a surface defined by the equation 

=x' _ ay' q_ y' " ~  (3.6) 2x y yx 

where the curvature x(s) can be expressed by y(s) [14]o In this case 
v =- O in solution (3.47. 

The condition 

P = P o  for r =h(s) (3.7) 

at the free surface of the jet  determines h(s), the jet thickness. When 
(8.6) is used, the last  relation of (3.47 gives us 

l 

h ( s ) =  e t lnP0 ( ~ I /~"  ~ r  (3.6) 

Integrating (3.6) and remembering that 

dV" + dz ~ = ds a, 

we obtain the equation for the generattix of the surface of rotation in 
quadrature form 

z = I D~Y~a+I ~ y -~ D~ 
[1 - -  (D~y ~=*~ - -  y + Dz)~] % d y  + Ds  , ( 3 . 9 )  

where D,, D2, ana D s are constants which are determined by specifying 
the coordinates, angle of inclination, and curvature of the generatrix 
at the origin. 

Co) Operator 8X3 + X4 in (2.87. In this case a comple te  set of func- 
tionally independent invariants is 

J ,  = rx  (s), J~ = ur -~, Js  = wr -=~, J ,  = ~I~+~/• (3.10) 

Solving (3.10) for u, v, and w, we obtain 

w =  Ja ( [ )  r 't~, [ = Jx = r x  (s) (3.11) 

To determine the functions Jz(~), Js([), and J4(~) from Eqs. (1.4) and 
relation (2.3) we have the system of ordinary differential equations: 

JzJz;~ -[- JaJ~'~ -~ -~" Ja'~ = O, 

J~z = Js" "~- 2~Js~ -x, J2"~ q- J4"~ -~ "4- J~b = 0 (3.127 

For the case B = 0 Eqs. (3.12) are integrated in finite form and 
we Obtain 

} u = c ~ e x p  - -  ~ - - 2 ( l - - b ) ~ + 2 c a  ' 

v = ~  ( ~ 2 "  2b~ + 2ca)exp { - - i  ~ 2 -  2 (12-~db~)~ ~ 2cs}'  

w = c 2 ~ i e x p  { - - i ~ _ 2 ( i 4 ~ 1 ) ~ + 2 c s } d ~  + c , .  (3.13) 

t-Iere cz, cs, and c4 are integration constants. It follows from 
condition (3.5) that e s = 0. 

Thus a particular solution of system (1.47 deseribing the jet  motion 
of a thin layer of fluid over a surface of rotation, takes the form 

u =  [~q_2(l_b)]2 ' v - - 2 x  [ ~ + 2 ( l - - b ) ] ~ '  
c~: 

w = c4 - -  ( 3 . 1 4 )  
3[~ § 2 (l - -  b)p 

This solution is valid for a surface of rotation which satisfies 
relation (2.3), from which we find the equation for the generatrix 
ot the surface of rotation in the form: 

= f F lym -}'- F~ dy -}- Fs ,  (3.15) 
z [i - -  (Fly m -~ F~)Z] V" 

where F a, F~, aria Fs are integration constants and m = (b + 1)b -1. 
As before, the jet thiekness is determined by (3.77, the condition 

at the free surface. 
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